Polymer nanocomposites based on poly(ethylene terephthalate) PET and with an intercalated and fairly dispersed nanostructure have been obtained in the melt state using a twin screw extruder. The intercalation and dispersion levels as well as the mechanical properties were studied varying the chemical nature and amount of the organic modification of the clay as well as the clay content. The intercalation level of PET into the organoclay galleries was measured by the increase in the interlayer distance upon mixing. The surfactant content did not influence the intercalation level but an interaction between the polymeric matrix and the surfactant, through a common polar character led to easier intercalation. The observed modulus increases and consequently the overall dispersion did not almost depend on either the amount or chemical nature of the used organic modification of the clay, suggesting that the parameters leading to high intercalation differ from those lead to a high modulus of elasticity and therefore to a high dispersion level. The obtained increases in the modulus of elasticity that reflect the dispersion level were large attaining a 41% increase with respect to that of the matrix after a 6wt% clay addition.

This content is only available via PDF.
You do not currently have access to this content.