Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-4 of 4
Vapors
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. JRC2019, 2019 Joint Rail Conference, V001T02A002, April 9–12, 2019
Paper No: JRC2019-1286
Abstract
The AdapterPlus™ steering pad is a polymer component on a railcar that helps to reduce stresses on the axle as a railcar rounds a curve. One railway application requires a minimum of 240 mA to be passed through the steering pad to the rail, which activates air valves that control automated cargo gates. Currently, two copper studs are inserted into the pad to provide a conductive path. However, after continuous cyclic loading caused by normal service operation, the copper studs deform, wear, and eventually lose contact between the two surfaces rendering the pad nonconductive. One proposed solution to this problem is to create a steering pad made entirely from an electrically conductive material. The University Transportation Center for Railway Safety (UTCRS) research team has successfully created a conductive nanocomposite made from vapor grown carbon nanofibers (CNFs) and a modified form of Elastollan 1195A thermoplastic polyurethane (TPU). Previous attempts to create this material were promising but failed to produce an electrically conductive specimen when injection molded. Preliminary results have shown that the new material can be injection molded to create an electrically conductive test specimen. An injection molded insert was designed, fabricated, and incorporated into the existing steering pad design for further testing. Pressure measurement film had previously been used to find the points of maximum stress inside the pad to optimize the design of the composite insert. Characterization of the resistivity of the composite material was carried out in order to verify functionality in future iterations of this product. The resistance of the composite material is expected to be non-linear with a strong dependence on load and voltage. Conductivity tests were performed using a material testing system with a compressive load ranging from 1500 pounds to 5500 pounds. The voltage at each load was also varied between 10V to 20V and the nonlinear resistance of the material was examined. The results have shown that the CNF/TPU composite is a potential replacement for the current TPU used for the pad and, with minimal modifications, can be implemented in field service operation.
Proceedings Papers
Proc. ASME. JRC2014, 2014 Joint Rail Conference, V001T06A014, April 2–4, 2014
Paper No: JRC2014-3851
Abstract
The recent expansion in the production of shale petroleum crude oil, combined with the lack of new pipeline construction, has placed the railroads at the center stage for safe and efficient transport of very large volumes of this commodity. Petroleum crude oil poses fire risk in the event of train accidents. The consequence modeling based on the US DOT Emergency Response Guidebook (ERG) or ALOHA (Areal Locations of Hazardous Atmospheres), a popular atmospheric dispersion model used for evaluating releases of hazardous chemical vapors, may be overly simplistic and limited to estimate the risk of flammable liquid releases. This paper aims to address this gap and develop a simple model to estimate flammable liquid release consequences, focusing on petroleum crude oil. A flow model using the spatial geographic information system (GIS) and the digital elevation model (DEM) is developed. The methodology was illustrated with a case study comparing the results from the model to the area affected from the Lac-Mégantic accident. Although the model does not consider advanced flow types or fire propagation, the results accurately describe the consequences of the accident, demonstrating the potential capability of this methodology to estimate the consequences of a crude oil release.
Proceedings Papers
Proc. ASME. JRC2012, 2012 Joint Rail Conference, 213-223, April 17–19, 2012
Paper No: JRC2012-74078
Abstract
Diesel fuel used in locomotives generally does not pose a fire hazard. However, diesel vapor generated within tank vapor space attains flammability condition as the fuel temperature gets closer to the fuel-flash point, which may cause a fire hazard in the event of a tank breach due to collision or derailment of the locomotive. As a part of an ongoing Federal Railroad Administration (FRA) sponsored research effort, a proof-of-concept laboratory scale demonstration has shown that it is possible to circulate the mixture of diesel vapor and air through a small vapor condenser unit to reclaim the fuel vapor. The recovered fuel is shown to possess almost similar specific heat value and hydrocarbon constituents as that of neat diesel fuel and hence reusable. Furthermore, the vapor reclamation process enables mitigation of fire hazard and reduction of diesel vapor escape to the environment. In order to assess the real potential of diesel vapor reclamation on a running locomotive, real-time fuel temperature data was collected during a medium-haul run of a BNSF Railway freight locomotive. This paper presents the real-time fuel temperature data collected on a BNSF Railway instrumented locomotive tank as well as results of computational fluid dynamics (CFD) analyses performed for the full-scale locomotive tank. In continuation of the research and development effort, the design of a scaled up diesel vapor reclamation system is presented. The scope of its integration with a railroad freight locomotive is summarized and subsequent steps for its performance evaluation on a running locomotive are discussed.
Proceedings Papers
Proc. ASME. JRC-ICE2007, ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference, 151-159, March 13–16, 2007
Paper No: JRC/ICE2007-40085
Abstract
Flammable materials such as gasoline, ethanol, and diesel fuel are commonly transported in bulk via rail. In many cases, pockets of vapor can be generated inside the tank that can present a hazard if spilled during a collision or other catastrophic accident. Vapor conditions above the Lower Explosive Limit (LEL) if exposed to an external ignition source can result in an explosion or fire. Alternately, residual vapors within a tank present an explosion hazard if not properly vented or inerted prior to maintenance activities. This paper summarizes a generalized study of hazards associated with flammable liquids using computation fluid dynamics (CFD) to predict vapor conditions within a tank or following a spill. The analysis was verified in laboratory testing using scaled tank geometries. A demonstration case was developed using diesel fuel in a locomotive fuel tank. Typical road locomotives carry 3000–5000 gal of diesel fuel during normal operation. As the locomotive consumes fuel, large volumes are available for vapor generation within the tank. In a post-collision scenario, under ambient temperatures over the flash point of the fuel, the vapor that vents to the atmosphere presents a significant fire hazard. Further, flammable mists can be generated by the sprays that develop due to fuel leaks from a moving train. Studies of accident cases over a 10 year period indicated that a fire occurred in 80% of the accidents in which fuel was spilled. A CFD analysis was applied to the geometry associated with a locomotive fuel tank. The analysis models the two phase flow using the “volume of fluid” formalism in Fluent, and using a user defined diesel fuel evaporation algorithm. The tank and environmental parameters included fuel volume, fuel temperature, and air flow within the tank, and critical values of vapor content, temperature and velocity were plotted. The analysis predicted ignition of the external vapor cloud at temperatures relevant to a spill in a summer environment in the southwest, and propagation of the flame into the fuel tank. Laboratory testing confirmed the analysis: Once ignited, a flame propagated into the tank, causing an explosion and fire. The analysis methods developed can be applied to a variety of geometries and fluids, providing a basis for full scale testing. The overall intent of the analysis is to aid in the development of fire mitigation approaches for fuel and flammable material transport that would be practical for railroad use.