Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-3 of 3
Aerodynamics
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. JRC2012, 2012 Joint Rail Conference, 607-616, April 17–19, 2012
Paper No: JRC2012-74050
Abstract
Embankment is a typical layout for rail infrastructures and train aerodynamic coefficients in this scenario are necessary for the analysis of cross wind effects. Nevertheless wind tunnel tests on scale models with the embankment scenario presents difficulties in the reproduction of the boundary conditions, that is the simulation of a “pseudo-infinite” full scale embankment. To investigate this topic we have performed wind tunnel tests on an ETR500 1:45 scale model using a finite length embankment, with and without an upwind nose and a “pseudo-infinite” embankment, reproduced by the extension wall-to-wall of the scenario. The paper presents the tests results in terms of aerodynamic force coefficients and surface pressures. Guidelines for wind tunnel tests on embankment are than discussed.
Proceedings Papers
Proc. ASME. JRC2011, 2011 Joint Rail Conference, 339-344, March 16–18, 2011
Paper No: JRC2011-56110
Abstract
In this study, the aerodynamic characteristics of pantograph system according to the pantograph cover configurations for high speed train were investigated by wind tunnel test. Wind tunnel tests were conducted in the velocity range of 20∼70m/s with scaled experimental pantograph models. The experimental models were 1/4 scaled simplified pantograph system which consists of a double upper arm and a single lower arm with a square cylinder shaped panhead. The experimental model of the pantograph cover is also 1/4 scaled and were made as 4 different configurations. It is laid on the ground plate which modeled on the real roof shape of the Korean high speed train. Using a load cell, the aerodynamic force such as a lift and a drag which were acting on pantograph system were measured and the aerodynamic effects according to the various configurations of pantograph covers were investigated. In addition, the total pressure distributions of the wake regions behind the panhead of the pantograph system were measured to investigate the variations of flow pattern. From the experimental test results, we checked that the flow patterns and the aerodynamic characteristics around the pantograph systems are varied as the pantograph cover configurations. In addition, it is also found that pantograph cover induced to decrease the aerodynamic drag and lift forces. Finally, we proposed the aerodynamic improvement of pantograph cover and pantograph system for high speed train.
Proceedings Papers
Proc. ASME. JRC2010, 2010 Joint Rail Conference, Volume 2, 213-220, April 27–29, 2010
Paper No: JRC2010-36207
Abstract
Winds as an environmental factor can cause significant difficulties for the railway system operation. The railway overhead has been particularly vulnerable to cross-winds related problems, such as development of undamped oscillations due to galloping phenomenon. The installation of windbreaks to decrease the aerodynamic loads on the train can affect the loads on railway overheads triggering cable galloping. One essential parameter to indicate the influence of the parapet wake on the catenary contact wire is the turbulence intensity. In this paper the results of an experimental analysis of the turbulence intensity due to the presence of parapets carried out in a wind tunnel are reported. Embankments equipped with different parapets have been tested and turbulence intensity has been measured at both contact wire locations, windward and leeward. The relative influence of the parapets is measured through a reduced turbulence intensity, defined as the ratio between the turbulence intensity measured with parapet and the turbulence intensity in the case without any parapet on the embankment. In general the reduced turbulence intensity increases as the height of the parapet increases.