Abstract

Expanding on the insights from our initial investigation into railway accident patterns, this paper delves deeper into the predictive capabilities of machine learning to forecast potential accident trends in railway crossings. Focusing on critical factors such as “Highway User Position” and “Equipment Involved,” we integrate Kernel Ridge Regression (KRR) models tailored to distinct clusters, as well as a global model for the entire dataset. These models, trained on historical data, discern patterns and correlations that might elude traditional statistical methods. Our findings are compelling: certain clusters, despite limited data points, showcase remarkably Root Mean Squared Error (RMSE) values between predictions and real data, indicating superior model performance. However, certain clusters hint at potential overfitting, given the disparities between model predictions and actual data. Conversely, clusters with vast datasets underperform compared to the global model, suggesting intricate interactions within the data that might challenge the model’s capabilities. The performance nuances across clusters emphasize the value of specialized, cluster-specific models in capturing the intricacies of each dataset segment. This study underscores the efficacy of KRR in predicting future railway crossing incidents, fostering the implementation of data-driven strategies in public safety.

This content is only available via PDF.
You do not currently have access to this content.