Abstract

This study presents an experimental study of the effect of Top-of-Rail Friction Modifiers (TORFM) in quantities ranging from a small to a large amount on the progression of wheel-rail wear, using the Virginia Tech-FRA (VT-FRA) roller rig. TORFM behaves as a third body layer in between the wheel and rail and is applied to reduce wheel and rail wear while preserving a stable traction condition. An added benefit of TORFM is that it is estimated that it can reduce fuel consumption by controlling friction, although we are not aware of any proven data in support of this. Although widely used by the U.S. Class I railroads, there exists no proven method for determining, qualitatively or quantitatively, how the amount of TORFM and rail/wheel wear are related. Simply put, would increasing TORFM amount by a factor of two reduce wheel/rail wear and damage by one-half? How would such doubling effect traction or the longevity of TORFM on the wheel/rail surface? In this study, the VT-FRA roller rig is used to perform a series of tests under highly controlled conditions to shed more light on answering these questions. A series of controlled experiments are designed and performed in order to investigate the potential factors that may influence the traction performance. The wheel surface profile is measured by a high-precision, 3D, laser profiler to measure the progression of wheel wear for the duration of the experiments. The results indicate that it takes as much longer time for the traction force (traction coefficient) to reach a condition that is the same as the unlubricated rail, when compared between lightly-, moderately-, and heavily-lubricated conditions. The results further indicate that wear generation is delayed significantly among all lubrication conditions — even, the lightly-lubricated — when compared with the unlubricated conditions. A further evaluation of the results and additional tests are needed to provide further insight into some of the preliminary results that we have observed thus far.

This content is only available via PDF.
You do not currently have access to this content.