Radio-based Communication-Based Train Control (CBTC) systems are widely utilized in major urban centers around the world to improve capacity, performance, and safety of public rail transportation systems. The system primary functionalities are performed based on the wireless mobile communication media, through which wayside-onboard communication data links are established.

The focus of the presented research is to improve the performance of the CBTC wireless network by providing an efficient framework for placement optimization of the wayside transceivers aiming to maximize the radio coverage. The QoS-oriented convex optimization cost function is based on a heuristic model of radio wave propagation in the tunnel environment. The optimization engine uses the robust, efficient, and well-behaved Nelder-Mead algorithm. Furthermore, to provide reliable means for verification, numerical results are compared with measured data produced through an empirical site survey process performed for an actual CBTC system deployment.

This content is only available via PDF.
You do not currently have access to this content.