This paper deals with the problem of static and dynamic (or kinetic) friction, namely the coefficients of friction for the two states. The coefficient of static friction is well known, and its theory and practice are commonly accepted by the academia and the industry. The coefficient of kinetic friction, however, has not fully been understood. The popular theory for the kinetic friction is that the coefficient of dynamic friction is smaller than the coefficient of static friction, by comparison of the forces applied in the two states. After studying the characteristics of the coefficient of friction, it is found that the comparison is not appropriate, because the inertial force was excluded. The new discovery in the paper is that coefficients of static friction and dynamic friction are identical. Wheel “locked” in wheel braking is further used to prove the conclusion.

The key to cause confusions between the two coefficients of friction is the inertial force. In the measurement of the coefficient of static friction, the inertial force is initiated as soon as the testing object starts to move. Therefore, there are two forces acting against the movement of the object, the frictional force and the inertial force. But in the measurement of the coefficient of kinetic friction, no inertial force is involved because velocity must be kept constant.

This content is only available via PDF.
You do not currently have access to this content.