Abstract

In this investigation, computational multibody systems (MBS) algorithms are used to develop detailed railroad vehicle models for the prediction of the wear resulting from the pantograph/catenary dynamic interaction. The catenary wear is predicted for different motion scenarios that include constant-speed curve negotiation, and acceleration and deceleration on a tangent (straight) track. The effect of the vehicle vibration in these different motion scenarios on the contact force is further used to study the wear rates of the contact wire. The wear model used in this investigation accounts for the electrical and the mechanical effects. The nonlinear finite element (FE) absolute nodal coordinate formulation (ANCF), which is suitable for implementation in MBS algorithms, is used to model the flexible catenary system, thereby eliminating the need for using incremental rotation procedures and co-simulation techniques. The pantograph/catenary elastic contact formulation employed in this study allows for separation between the pantograph pan-head and the contact wire, and accounts for the effect of friction due to the sliding between the pantograph pan-head and the catenary cable. The approach proposed in this investigation can be used to evaluate the electrical contact resistance, contribution of the arcing resulting from the pan-head/catenary separation, mechanical and electrical wear contributions, and effect of the pantograph mechanism uplift force on the wear rate.

This content is only available via PDF.
You do not currently have access to this content.