In this study, the effect of natural third body layers on the coefficient of friction and contact forces is evaluated using the Virginia Tech-Federal Railroad Administration (VT-FRA) roller rig facility. The test rig allows us to precisely control the contacting surfaces to study its effect on the wheel-rail interface forces and moments. Experiments have shown while running the tests, a slight amount of wear occurs at the running surfaces. The worn material deposits at the surface and behaves like a “natural” third-body layer at the contact, resulting in changes in traction coefficient and creep forces. The material wear and its accumulation on the running surfaces change with wheel longitudinal load and creepage.

A series of organized time-based experiments have been conducted with the running surfaces cleaned at the beginning of the test to study the effect of material wear accumulation on selected parameters including traction coefficient and creep forces over time. In order to highlight the effect of the natural third body layer on the wheel-rail contact forces, a series of experiments were conducted, in which the wheel and roller surfaces were cleaned in one case and left uncleaned in another. The results of the experiments are quite revealing. They indicate that when the running surfaces are cleaned after each test, the maximum creep force (or adhesion) is far lower than when the running surfaces are not cleaned, i.e., the natural third-body layer is allowed to accumulate at the surfaces. The results indicate that the wear debris act as a friction enhancer rather than a friction reducer.

This content is only available via PDF.
You do not currently have access to this content.