An important consideration when operating a fleet of passenger rail consists is the remaining service life of both the car structure and the trucks. Agencies may choose to undertake studies like this when considering a fleet wide capital improvement program, ranging from minor aesthetic upgrades to major system replacements and interior reconfigurations. With this in mind, the owner needs to determine the remaining fatigue life of the individual cars and trucks within the fleet. This paper describes the fitness-for-service (FFS) assessment performed on railcars and trucks and an example of the method applied in practice.
To establish the current condition of the fleet, an initial structural and service history review was undertaken. In addition, nondestructive examinations (NDE) of a sample of cars and trucks were performed to investigate any regions that have experienced damage due to the years of service. After the baseline condition of the cars and trucks was determined, finite element analyses (FEA) were performed on both the cars and the trucks to assist in locating the potential fatigue critical regions. Strain gages and accelerometers were then installed on both the cars and trucks for field testing. Multiple runs of in-service testing were performed and a typical revenue service fatigue life of both the cars and trucks was calculated based on an S-N approach. Based on the calculated fatigue life and the current accumulated consist mileage, the remaining car and truck service lives were determined. For regions with known flaws more detailed fracture mechanics based crack growth analyses were developed to determine critical flaw sizes and their propagation times to critical from the known initial flaw sizes.
Results of the FFS assessment provide information on the susceptible areas within the car structure and trucks. Depending on those results, decisions can be made on the required inspections, repairs, or decommissioning necessary to operate the fleet in the short term, while also providing valuable insight into long term fleet planning.