This paper reports on the ballast layer mesoscale behavior, tie-ballast interaction, and ballast-subgrade interaction under five crosstie support conditions, namely full support, lack of rail seat support, lack of center support, high center binding, and severe center binding condition. Discrete Element Method, an effective technique to study particulate natured unbound aggregate materials, i.e., ballast, was adopted in this study. The DEM simulations included one-tie spacing geometry, approximately 11,000 polyhedral particles. The ballast gradation used in DEM models was according to the AREMA No. 3 and No. 4A specifications. The shape properties of ballast particles in DEM models was consistent with field collected samples. The pressure distributions along tie-ballast interface under rail seat load of 10-kips predicted by DEM simulations were in good agreement with the results backcalculated from laboratory tests, which validated the DEM models. Next, DEM simulations considered rail seat loads of 20-kips and 25-kips. The predicted results indicated that support condition is a key factor for predicting normal stress distribution and force transmission within ballast layer. Ballast particles in shoulders and areas with poor support indicated low or negligible contact stresses. Extremely high normal stresses observed in some support conditions often exceeded single particle crushing load limit and thus would cause ballast particle breakage and layer degradation under repeated loading. Further, the tie-ballast pressure captured in some scenarios could be higher than allowable maximum pressure of 85-psi under concrete tie in AREMA standard. Finally, the pressure at bottom of the ballast layer obtained from the DEM simulations were compared with top of subgrade pressure calculated from analytical/empirical equations such as Talbot equation and AREMA manual.
Skip Nav Destination
2018 Joint Rail Conference
April 18–20, 2018
Pittsburgh, Pennsylvania, USA
Conference Sponsors:
- Rail Transportation Division
ISBN:
978-0-7918-5097-8
PROCEEDINGS PAPER
Ballast Support Condition Affecting Crosstie Performance Investigated Through Discrete Element Method
Wenting Hou,
Wenting Hou
University of Illinois at Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Bin Feng,
Bin Feng
University of Illinois at Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Erol Tutumluer
Erol Tutumluer
University of Illinois at Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Wenting Hou
University of Illinois at Urbana-Champaign, Urbana, IL
Bin Feng
University of Illinois at Urbana-Champaign, Urbana, IL
Wei Li
Zhejiang University, Hangzhou, China
Erol Tutumluer
University of Illinois at Urbana-Champaign, Urbana, IL
Paper No:
JRC2018-6258, V001T01A022; 7 pages
Published Online:
June 14, 2018
Citation
Hou, W, Feng, B, Li, W, & Tutumluer, E. "Ballast Support Condition Affecting Crosstie Performance Investigated Through Discrete Element Method." Proceedings of the 2018 Joint Rail Conference. 2018 Joint Rail Conference. Pittsburgh, Pennsylvania, USA. April 18–20, 2018. V001T01A022. ASME. https://doi.org/10.1115/JRC2018-6258
Download citation file:
40
Views
Related Proceedings Papers
Related Articles
Fully Two-Dimensional Discrete Inverse Eigenstrain Analysis of Residual Stresses in a Railway Rail Head
J. Appl. Mech (May,2011)
A Theoretical Model for the Normal Contact Force of Two Elastoplastic Ellipsoidal Bodies
J. Appl. Mech (March,2021)
Size Effects in a Slowly Sheared Granular Media
J. Appl. Mech (September,2001)
Related Chapters
Dismantling
Decommissioning Handbook
Analysis of Cylindrical Shells
Stress in ASME Pressure Vessels, Boilers, and Nuclear Components
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine