Train accidents damage infrastructure and rolling stock, disrupt operations, and may result in casualties and environmental damage. While the majority of previous studies focused on the safety risks associated with train derailments or highway-rail grade crossing collisions, much less work has been undertaken to evaluate train collision risk. This paper develops a statistical risk analysis methodology for freight-train collisions in the United States between 2000 and 2014. Negative binomial regression models are developed to estimate the frequency of freight-train collisions as a function of year and traffic volume by accident cause. Train collision severity, measured by the average number of railcars derailed, varied with accident cause. Train collision risk, defined as the product of collision frequency and severity, is predicted for 2015 to 2017, based on the 2000 to 2014 safety trend. The statistical procedures developed in this paper can be adapted to various other types of consequences, such as damage costs or casualties. Ultimately, this paper and its sequent studies aim to provide the railroad industry with data analytic tools to discover useful information from historical accidents so as to make risk-informed safety decisions.

This content is only available via PDF.
You do not currently have access to this content.