This paper illustrates the impact of progressive settlement on a railway bridge transition using a three-dimensional dynamic numerical model that includes the train truck, rails, ties, ballast, subgrade, and bridge abutment and structure. A settlement law that relates tie load to ballast settlement is presented and demonstrated using an iterative fashion to evaluate bridge transition response to 28 MGT. The results illustrate: (1) development of the commonly observed dip about 2.5 to 3.7 m (8 to 12 feet) from the entrance bridge abutment, (2) tie-ballast gaps progressively increase in height and expand to ties outwards from the bridge abutment, (3) a redistribution of load to ties outwards from the bridge abutment as tie-ballast gaps develop and increase, and (4) a ballast surface profile that attempts to minimize tie loads by evenly distributing the wheel load amongst adjacent ties.

This content is only available via PDF.
You do not currently have access to this content.