Although accident frequencies at railway grade crossings have shown a decreasing trend over the last two decades (partly due to implemented safety improvements and technological advances), safety at grade crossings is still a major concern since crossing accidents are usually associated with devastating consequences. This paper investigates the effect of various site attributes on railway crossing safety outcomes using recent Canada wide data from a 6-year period (2008–2013). The new data sets allow adjusting previous accident models according to latest circumstances (e.g., vehicles’ improved safety features) affecting safety dynamics at crossings. Employing Bayesian hierarchical models including the non-conventional Poisson-Weibull model, different safety performance functions were separately developed for crossings with the following major warning systems: (1) flashing light and bell (FLB), (2) flashing light, bell, and gate (FLBG), (3) standard reflectorized crossing sign (SRCS), and (4) standard reflectorized crossing sign and stop sign (SRCS & STOP). Among other findings, the results indicated that traffic exposure (product of train and vehicle), number of lanes, whistle prohibition, train speed, and road speed were the most important factors affecting accident frequencies at Canadian railway crossings. It should be also noted that safety performance functions vary, in terms of independent variables and their associated coefficients, between the aforementioned warning devices.

This content is only available via PDF.
You do not currently have access to this content.