Load tests were conducted on pretensioned concrete prisms cast with 13 different 5.32-mm-diameter prestressing wire types that are used in the manufacture of pretensioned concrete railroad ties worldwide. The tests were specifically designed to evaluate the development length and bonding performance of these different reinforcements. The prestressing wires were denoted “WA” through “WM” and indentation types included smooth, spiral, chevron, diamond, and 2-dot and 4-dot. Four wires were embedded into each concrete prism, which had a 3.5″ (88.9 mm) × 3.5″ (88.9 mm) square cross section. The wires were initially tensioned to 7000 pounds (31.14 KN) and gradually de-tensioned when the concrete compressive strength reached 4500 psi (31.03 Mpa). A consistent concrete mixture with type III cement, water-cement ratio of 0.32 and a 6-in. slump was used for all prisms.

Prisms were tested in 3-point-bending at different spans to obtain estimations of the development length of each type of reinforcement. Two identical 69-in.-long (175.26 cm) prisms were load tested, at both ends, for each reinforcement type evaluated. First prisms were tested at 20-in. (50.8 cm) from one end and 13-in. (33.02 cm) from the other end, whereas the second prisms were loaded at 16.5-in. (41.9 cm) from one end and 9.5-in. (24.13 cm) from the other end. Thus, a total of 52 load tests (13 wire types × 4 tests each) were conducted in this study.

During each test, a concentrate load with the rate of 300 lb/min (1334 N/min) was applied at mid-span until failure occurred, and values of load, mid-span deflection, and wire end-slip were continuously monitored and recorded. Plots of load-vs-deflection were then compared for prisms with each wire type and span, and the maximum sustained moment was also calculated for each test. The load tests revealed that there is a very large difference in the development length of the different wire types currently used in the manufacture of pretensioned concrete railroad ties. The results imply that there would also likely be large differences in the reserve capacity (beyond first cracking) for pretensioned concrete crossties fabricated with these different reinforcements.

This content is only available via PDF.
You do not currently have access to this content.