As higher demands are placed on North American railroad infrastructure by heavy haul traffic, it is increasingly important to understand the factors affecting the magnitude and distribution of load imparted to concrete crosstie rail seats. The rail seat load distribution is critical to the analysis of failure mechanisms associated with rail seat deterioration (RSD), the degradation of the concrete surface at the crosstie rail seat. RSD can lead to wide gauge, cant deficiency, and an increased risk of rail rollover, and is therefore of primary concern to Class I Freight Railroads in North America. Researchers at the University of Illinois at Urbana-Champaign (UIUC) have successfully characterized the loading environment at the rail seat using matrix-based tactile surface sensors (MBTSS). Previous research has proven the feasibility of using MBTSS in both laboratory and field applications, and recent field experimentation has yielded several hypotheses concerning the effect of fastening system wear on the rail seat load distribution. This paper will focus on the analysis of data gathered from laboratory experimentation with MBTSS to evaluate these hypotheses, and will propose a metric for crosstie and fastening system design which considers the uniformity of the load distribution. The knowledge gained from this experimentation will be integrated with associated research conducted at UIUC to form the framework for a mechanistic design approach for concrete crossties and fastening systems.
Skip Nav Destination
2015 Joint Rail Conference
March 23–26, 2015
San Jose, California, USA
Conference Sponsors:
- Rail Transportation Division
ISBN:
978-0-7918-5645-1
PROCEEDINGS PAPER
Evaluation of Laboratory and Field Experimentation Characterizing Concrete Crosstie Rail Seat Load Distributions
Matthew J. Greve,
Matthew J. Greve
University of Illinois at Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Marcus S. Dersch,
Marcus S. Dersch
University of Illinois at Urbana-Champaign, Urbana, IL
Search for other works by this author on:
J. Riley Edwards,
J. Riley Edwards
University of Illinois at Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Christopher P. L. Barkan
Christopher P. L. Barkan
University of Illinois at Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Matthew J. Greve
University of Illinois at Urbana-Champaign, Urbana, IL
Marcus S. Dersch
University of Illinois at Urbana-Champaign, Urbana, IL
J. Riley Edwards
University of Illinois at Urbana-Champaign, Urbana, IL
Christopher P. L. Barkan
University of Illinois at Urbana-Champaign, Urbana, IL
Paper No:
JRC2015-5685, V001T01A016; 8 pages
Published Online:
June 10, 2015
Citation
Greve, MJ, Dersch, MS, Edwards, JR, & Barkan, CPL. "Evaluation of Laboratory and Field Experimentation Characterizing Concrete Crosstie Rail Seat Load Distributions." Proceedings of the 2015 Joint Rail Conference. 2015 Joint Rail Conference. San Jose, California, USA. March 23–26, 2015. V001T01A016. ASME. https://doi.org/10.1115/JRC2015-5685
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Investigation of Top of Rail Lubrication and Laser Glazing for Improved Railroad Energy Efficiency
J. Tribol (July,2003)
Whip Stress in a Locomotive Main Rod at 100 Miles per Hour
Trans. ASME (February,1940)
Related Chapters
Geomatrix Model as New Tool for Improving Oil Spill Surveillance
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
FAILURE ANALYSIS OF A STRESS-BASED PIPELINE UNDER PLASTIC STRAIN
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
Compromise between Tensile and Fatigue Strength
New Advanced High Strength Steels: Optimizing Properties