Because of the recent emphasis on rail transit infrastructure expansion and rebuilding in the United States, there is concern about the potential adverse vibration effects on existing activities that are sensitive to vibration and ground-borne-noise located in proximity to new or reactivated rail system rights-of-way. A Southern California at-grade/elevated LRT system that is currently under construction required the design and specification of extensive vibration control features. The final design needed to include the entire range of vibration mitigation tools presented in the Federal Transit Administration guidance manual. Designs and Contract Specifications included simple single-layer ballast mats; multi-layer ballast mats; high-resilience direct fixation fasteners; potential wheel-squeal solutions; low-vibration special trackwork; continuously-supported, street-running, floating slab track; and discrete, steel-helical-spring-supported floating slab track. It is noteworthy that the discrete steel-spring-supported FST is the first use of this vibration control approach in an at-grade rail system in the United States. This paper will discuss the overall approach, data analysis, solutions development, and the final designs prepared for this project and how this information may be beneficial to other projects with similar issues.
Skip Nav Destination
2015 Joint Rail Conference
March 23–26, 2015
San Jose, California, USA
Conference Sponsors:
- Rail Transportation Division
ISBN:
978-0-7918-5645-1
PROCEEDINGS PAPER
Vibration Control Design for Light Rail Transit: A Single Project With the Full Rainbow of Vibration Control Features: Case Study
Rob Greene
Rob Greene
Parsons Brinckerhoff, Orange, CA
Search for other works by this author on:
Rob Greene
Parsons Brinckerhoff, Orange, CA
Paper No:
JRC2015-5617, V001T01A003; 15 pages
Published Online:
June 10, 2015
Citation
Greene, R. "Vibration Control Design for Light Rail Transit: A Single Project With the Full Rainbow of Vibration Control Features: Case Study." Proceedings of the 2015 Joint Rail Conference. 2015 Joint Rail Conference. San Jose, California, USA. March 23–26, 2015. V001T01A003. ASME. https://doi.org/10.1115/JRC2015-5617
Download citation file:
46
Views
Related Proceedings Papers
Related Articles
Fuzzy Sky-Ground Hook Control of a Tracked Vehicle Featuring Semi-Active Electrorheological Suspension Units
J. Dyn. Sys., Meas., Control (March,2002)
A Root Cause of Curve Squeal: Self-Excited Frictional Vibration of a Wheelset–Track System
J. Tribol (June,2024)
Active Vibration Control on a Tire–Wheel Assembly Using Piezoelectric Spatial Modal Filter
J. Vib. Acoust (April,2024)
Related Chapters
Introduction
Managing Risks in Design & Construction Projects
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Fourth Edition
Description of Rules of Section XII Transport Tank Code
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 2, Fourth Edition