The North American freight railroad network is projected to experience rising transportation demand in the coming decades, leading to increased congestion along many rail corridors. Increased interest in expanded passenger service on shared rail corridors will also create additional capacity demand. However, the nation’s rail lines are still predominantly single track with passing sidings, making double track installation a vital capacity upgrade measure to sustain future volumes. Since increasing capacity through double track installation requires significant capital investment, the second main track must be allocated along a line in an optimal manner to provide maximum return on investment. An approach of investing in the least costly segments first may yield good results, but only if the benefits for each segment are equal. This research seeks to identify if the benefit of double track varies between bottleneck segments, and if there are compounding benefits of double track between adjacent passing sidings. Previous research has explored the allocation of double track on an idealized line with evenly spaced passing sidings. Due to numerous physical and engineering constraints, existing lines often exhibit a mixture of siding spacing with single-track bottleneck sections of varying length. To investigate the incremental capacity of adding double-track segments to a route with variable siding spacing, several build-out strategies are tested on a representative subdivision under random, mixed freight and passenger traffic via Rail Traffic Controller simulation software. The presented results highlight the most effective method, based on train delay, of incremental single to double track expansion and the potential differences in benefit between strategies. The linear delay reduction characteristics of single-to-double track mainlines vary based on the initial spatial arrangement of passing sidings and amount of second main track installed. These results further the understanding of relationships between infrastructure location and freight delay, thereby serving as a guideline for the sustainable expansion of existing rail corridors in anticipation of future demands. While railroads must consider many factors in selecting capital expansion projects, these guidelines can streamline the decision process by helping to quickly identify the projects with the most potential for more detailed engineering evaluation. The methodology presented can eventually be incorporated into analyzing the progressions from double to triple track lines.
Skip Nav Destination
2014 Joint Rail Conference
April 2–4, 2014
Colorado Springs, Colorado, USA
Conference Sponsors:
- Rail Transportation Division
ISBN:
978-0-7918-4535-6
PROCEEDINGS PAPER
Siding Spacing and the Incremental Capacity of the Transition From Single to Double Track
Ivan Atanassov,
Ivan Atanassov
University of Illinois, Urbana, IL
Search for other works by this author on:
C. Tyler Dick,
C. Tyler Dick
University of Illinois, Urbana, IL
Search for other works by this author on:
Christopher P. L. Barkan
Christopher P. L. Barkan
University of Illinois, Urbana, IL
Search for other works by this author on:
Ivan Atanassov
University of Illinois, Urbana, IL
C. Tyler Dick
University of Illinois, Urbana, IL
Christopher P. L. Barkan
University of Illinois, Urbana, IL
Paper No:
JRC2014-3831, V001T04A005; 7 pages
Published Online:
June 3, 2014
Citation
Atanassov, I, Dick, CT, & Barkan, CPL. "Siding Spacing and the Incremental Capacity of the Transition From Single to Double Track." Proceedings of the 2014 Joint Rail Conference. 2014 Joint Rail Conference. Colorado Springs, Colorado, USA. April 2–4, 2014. V001T04A005. ASME. https://doi.org/10.1115/JRC2014-3831
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
The Motor Truck and L.C.L. Freight
Trans. ASME (January,1928)
Energy Savings Due to Wheel/Rail Lubrication—Seaboard System Test and Other Investigations
J. Eng. Ind (May,1985)
The Locomotive Boiler
Trans. ASME (July,1940)
Related Chapters
A New Solution to Implement Quality of Service in WiMAX Network
International Conference on Computer Engineering and Technology, 3rd (ICCET 2011)
Congestion-Aware Multipath Routing in Ad Hoc Networks
International Conference on Electronics, Information and Communication Engineering (EICE 2012)
Real Time Distributed Tri-Mode Control of Coefficient of Variance for High Quality of Service End-To-End Voice/ IP Application
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)