Model reference adaptive control (MRAC) is developed to control the electrical excitation frequency of AC traction motors under various wheel/rail adhesion conditions during dynamic braking. More accurate estimation and control of train braking distance can allow more efficient braking of rolling stock, as well as spacing trains closer together for Positive Train Control (PTC). In order to minimize the braking distance of a train, dynamic braking forces need to be maximized for varying wheel/rail adhesion. The wheel/rail adhesion coefficient plays an important role in safe train braking. Excessively large dynamic braking can cause wheel lockup that can damage the wheels and rail, or may lead to large coupler forces, possibly causing derailment or broken components. In this study, a multibody formulation of a locomotive and three railcars is used to develop a model reference adaptive controller for adjusting the voltage excitation frequency of an AC motor such that the maximum dynamic braking is achieved, without locking up the wheels. A relationship between creep forces, creepages, and motor braking torque is established. This relationship is used to control the motor excitation frequency in order to closely follow the reference model that aims at achieving maximum allowable adhesion during dynamic braking. The results indicate that MRAC significantly improves braking distance while maintaining better wheel/rail adhesion and coupler dynamics during dynamic braking.

This content is only available via PDF.
You do not currently have access to this content.