Mass transit systems are gaining increased attention and popularity in the country. With this increased activity, more and more lines are getting added under public transit systems in more and more cities. One of the essential elements in the transit system is the traction transformer which powers the trains. With the emphasis on reliability, there is also increased awareness of the energy efficiency required of the traction substation equipments and the transformer in particular.

Traction transformers are not ordinary power or distribution transformers. They have to meet several special requirements, including parameters like voltage regulation, impedance, commutation, short circuit withstand, operation with rectifiers, harmonic losses, wide fluctuation of load currents depending on the cyclic nature, etc. The reliability criteria are stringent and the traction transformers have to be properly designed, manufactured and tested, including short circuit testing for validation.

Use of modern design tools like electric and magnetic field mapping and estimation of forces and stresses are helpful in computing them accurately.

With the extensive use of vacuum circuit breakers, the subject of interaction of transformers and breakers have come to the foreground. New standards (like IEEE C57.142) have come into existence, which recommend methods to mitigate such effects. The author of this paper and his team has successfully applied these techniques in real life situations to solve problems.

Work is in the final stages for preparation of a standard specifically for Traction Power Rectifier Transformers for transit applications (IEEE draft standard 1653.1) under the IEEE Vehicle Standards Committee.

This content is only available via PDF.
You do not currently have access to this content.