The dynamic impact forces due to the wheel defect such as a flat is a main concern for a heavy freight train operating at high speed. The present investigation employs a pitch plane vehicle model coupled with a comprehensive three-layer track system model to study the impact force generated in the wheel-rail interface due to the presence of wheel flats. The wheel-rail contact is modeled using nonlinear Hertzian contact theory. Responses in terms of wheel-rail impact load and forces transmitted to bearings, pad and ballast are evaluated in an attempt to identify desirable design and operating factors. Wheel-rail impact loads due to the presence of multiple flats either in single or different wheels in-phase or out-of-phase conditions are evaluated and analyzed. A detailed parametric study is carried out that includes the variations in selected vehicle, track, operational as well as flat parameters. The results show that the effect of multiple flats is insignificant if they are more than 45° apart. The impact due to single wheel flat can be larger than in-phase flats at each wheel due to the presence of pitch dynamics. The parametric study shows that other than speed, depth and length of the flats are most sensitive parameters, and there exists a critical length at each flat depth that leads to the largest impact load.

This content is only available via PDF.
You do not currently have access to this content.