The rising demand for high-performance central and graphical processing units has resulted in the need for more efficient thermal management techniques like direct-to-chip liquid cooling. Direct Liquid Cooling using cold plates is one of the most efficient and investigated cooling technologies since the 1980s. Major data and cloud providers are actively deploying liquid-cooled data center infrastructure due to rising computational demands. Liquid to liquid heat exchangers used in liquid-cooled data centers is also referred to as coolant distribution units (CDUs). Most of these CDUs selected by the data center operator is based on the heat load of the data center and the available head with that CDU. In this study, three 52U racks with six high-power TTV-based servers (Thermal Test Vehicles) in each rack were designed and deployed. Each server consists of eight GPU TTVs and six NV switch heaters. A 450-kW liquid-cooled CDU is used, and propylene glycol 25% is used as a coolant. Typical CDUs are designed to operate at 20 to 30% of the rated heat load to achieve a stable secondary coolant supply temperature. The present study will investigate the operations of CDU at very low heat loads, like 1% to 10% of the CDU’s rated capacity. At these low loads, large fluctuations in secondary side supply temperature were observed. This large fluctuation can lead to the failure of the 3-way valve used in CDUs at the primary side. In this paper, a control strategy is developed to stabilize the secondary supply temperature within ± 0.5 °C at very low loads using the combination of a flow control valve on the primary side and PID control settings within the CDU.

This content is only available via PDF.
You do not currently have access to this content.