Abstract
This study describes a thermal design method of forced convection cooling in high-density packaging electronic equipment for upstream design processes by flow and thermal resistance network analysis. Forced convection cooling by combining fans and heat sinks is the most standard strategy for dissipating heat from electronic equipment. In recent years, the thermal design of electronic equipment becomes more critical, and fast thermal design is required due to the rapid development of final products. We have been developing the flow and thermal resistance network analysis as the quick thermal design method for electronic equipment. However, an accurate prediction of forced convection cooling performance by finned heat sinks mounted in high-density packaging electronic equipment is generally tricky. Some bypasses, which are clearances between the heat sinks and enclosure walls or other components, exist around the heat sinks. Therefore, a flow rate distribution between the heat sink fins and the bypasses should be predicted. Many researchers have investigated hydrodynamic characteristics and heat transfer characteristics of finned heat sinks. However, many previous studies have been conducted on the finned heat sink performance when there are no bypasses. In order to achieve an optimum design of the finned heat sinks in the upstream configuration regardless of the heat sink dimensions, a systematic database of hydrodynamic characteristics and heat transfer characteristics of the finned heat sinks with bypasses should be investigated.
This paper discusses the development of function models of pressure drop, flow rate distribution, and heat transfer of the finned heat sinks with the bypasses for the resistance network analysis through experiments and CFD analysis. Several types of finned heat sinks with 40 mm in width and 80 mm in length were prepared, and these were mounted in a rectangular enclosure with 45 mm in width and height. First, the pressure drop characteristic around the heat sink was investigated. In addition, the flow rate distribution between the heat sink and the bypass was evaluated separately.
A flow branching coefficient was developed to predict the flow rate distribution around the heat sink combined with the pressure drop coefficient. Using the developed flow branching coefficient, the flow and thermal resistance network model around the finned heat sink was developed. The results from the proposed resistance network model showed good agreement with those from the experiment.