Ceramic substrates for electronic packaging of high-power applications are growing in demand due to their robustness as power and thermal requirements increase. Aluminum nitride (AlN) has excellent thermal and electrical properties with copper currently being bonded to AlN via a direct bond copper (DBC) technique. However, substrates fabricated by DBC are subjected to thermo-mechanical fatigue during fabrication processes and power cycling. DBC substrate’s reliability is negatively affected by the large mismatch in coefficient of thermal expansion that hinders the possibility of thicker substrates, therefore limiting its use for applications above 20 kV. This work employed cold gas spraying (CGS) to mechanically bond Cu on AlN. CGS is a low-temperature additive manufacturing method that accelerates powder particles at near-supersonic velocities to impact a surface causing plastic deformation and mechanical bonding. On ceramic-metal systems CGS has not been widely studied owing to ceramics’ inability to deform plastically, therefore, surface functionalization was performed to enhance the mechanical interlocking mechanism. A factorial design of experiments (DOE) was used to assess the effect of factors: temperature, pressure, stand-off distance, angle of deposition, and travel speed on various substrate surfaces in the CGS fabrication process. These experiments resulted in a successful deposition of copper on AlN.

This content is only available via PDF.
You do not currently have access to this content.