Abstract

Increasing power densities in data centers due to the rise of Artificial Intelligence (AI), high-performance computing (HPC) and machine learning compel engineers to develop new cooling strategies and designs for high-density data centers. Two-phase cooling is one of the promising technologies which exploits the latent heat of the fluid. This technology is much more effective in removing high heat fluxes than when using the sensible heat of fluid and requires lower coolant flow rates. The latent heat also implies more uniformity in the temperature of a heated surface. Despite the benefits of two-phase cooling, the phase change adds complexities to a system when multiple evaporators (exposed to different heat fluxes potentially) are connected to one coolant distribution unit (CDU). In this paper, a commercial pumped two-phase cooling system is investigated in a rack level. Seventeen 2-rack unit (RU) servers from two distinct models are retrofitted and deployed in the rack. The flow rate and pressure distribution across the rack are studied in various filling ratios. Also, investigated is the transient behavior of the cooling system due to a step change in the information technology (IT) load.

This content is only available via PDF.
You do not currently have access to this content.