The increasing complexity of electronics in systems used in safety critical applications, such as for example self-driving vehicles requires new methods to assure the hardware reliability of the electronic assemblies. Prognostics and Health Management (PHM) that uses a combination of data-driven and Physics-of-Failure models is a promising approach to avoid unexpected failures in the field. However, to enable PHM based partly on Physics-of-Failure models, sensor data that measures the relevant environment loads to which the electronics is subjected during its mission life are required. In this work, the feasibility to manufacture and use integrated sensors in the inner layers of a printed circuit board (PCB) as mission load indicators measuring impacts and vibrations has been investigated. A four-layered PCB was designed in which piezoelectric sensors based on polyvinylidenefluoride-co-trifluoroethylene (PVDF-TrFE) were printed on one of the laminate layers before the lamination process. Manufacturing of the PCB was followed by the assembly of components consisting of BGAs and QFN packages in a standard production reflow soldering process. Tests to ensure that the functionality of the sensor material was unaffected by the soldering process were performed. Results showed a yield of approximately 30% of the sensors after the reflow soldering process. The yield was also dependent on sensor placement and possibly shape. Optimization of the sensor design and placement is expected to bring the yield to 50 % or better. The sensors responded as expected to impact tests. Delamination areas were present in the test PCBs, which requires further investigation. The delamination does not seem to be due to the presence of embedded sensors alone but rather the result of a combination of several factors. The conclusion of this work is that it is feasible to embed piezoelectric sensors in the layers of a PCB.

This content is only available via PDF.
You do not currently have access to this content.