Penetration of electrified vehicles has increased steadily over the last decade due to unstable fuel prices, and the ability of such vehicle to offer lower cost per mile for transportation. At the same time, strict fuel emission standards continue to motivate the auto industry to invest resources on developing new technologies, which allow economically feasible electrification of vehicles and enable mass production. In electric vehicles, the electric drive system converts electrical energy into mechanical energy that powers the vehicle wheels. In this article, we present thermal model based fault detection and isolation methodology for power inverter insulated gate bipolar transistor (IGBT) modules, which play a key role in converting DC power from the battery into AC power that goes into the electric motor and drives the wheels through the transmission module. We do not propose any additional sensing capability, and make use of what is typically available in most of the production vehicles today across the industry. Results are presented from simulation studies that highlight the effectiveness of our proposed method.

This content is only available via PDF.
You do not currently have access to this content.