Thermal Interface materials are crucial elements for packaging of power electronics. In particular, development of high temperature lead free die-attach thermal interface materials for silicon carbide wide bandgap power electronics is a challenge. Failures of power electronics package modules often occur at die-attach areas. Among major options, sintered silver shows advantages in ease of applications. Cost, reliability, and integration are concerns for technology implementation. The current study first discusses issues and status reported in literatures. Then it focuses on cost reduction and improvement of sintered silver using enhancement structures at micro and nano scales. A few design architectures are analyzed by finite element methods. The feasibility of strengthening edges and corners is also assessed. The downside of potential increase of unfavorable stresses to accelerate void coalescence would be discussed in conjunction with design concept of power electronics package modules for paths of solutions in the form of integrated module systems.

This content is only available via PDF.
You do not currently have access to this content.