Field extracted electrical assemblies, subjected to harsh environments including storage, and transportation may have often sustained degradation in their material properties and physical structure, without exhibiting external signs of damage. The lack of macro-indicators of damage makes the quantification of sustained damage and the remaining useful life challenging for assessment of the reliability makes quantification of accrued damage and remaining useful life much difficult. The operation environment requires survivability under high-g loads often in excess of 10,000g-100,000g. The need of non-destructive test methods for determination of the internal damage and the assessment of expected operational reliability under the presence of accrued damage from prolonged storage is extremely desirable. While a number of non-destructive test methods such as x-ray, and acoustic imaging exist in the state-of-art — they are limited to the acquisition of imaging of the internal damage state without the ability of conducting measurement of deformation under the action of environment loads. There is scarcity of literature on studying progressive damage to the physical structure of fuze components when subjected to high g shocks. Previously, researchers have studied the reliability of fuze subjected to high-temperature and high-g mechanical shocks, measured redundancy and reliability of fuze electronics through prediction of failure rates and MTTF using MIL-HDBK-217F standard, and performed on fault diagnosis. In this paper, a full-field deformation measurement technique has been presented to monitor damage in key components of the fuze after exposure to multiple high G shocks. Fuze assembly has been subjected to 30,000g mechanical shock until failure. The fuze assembly is CT scanned at regular intervals and the scan data is compared to the pristine scan data to compute physical deformations and damage sustained during the mechanical shock event.
Skip Nav Destination
ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems
August 29–September 1, 2017
San Francisco, California, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-5809-7
PROCEEDINGS PAPER
Damage Progression in Fuze Assemblies Subjected to High-G Mechanical Shock Using X-Ray Digital Volume Correlation
Nakul Kothari,
Nakul Kothari
Auburn University, Auburn, AL
Search for other works by this author on:
John Deep
John Deep
US Air Force Research Labs, Eglin AFB, FL
Search for other works by this author on:
Pradeep Lall
Auburn University, Auburn, AL
Nakul Kothari
Auburn University, Auburn, AL
John Deep
US Air Force Research Labs, Eglin AFB, FL
Paper No:
IPACK2017-74269, V001T03A008; 8 pages
Published Online:
October 27, 2017
Citation
Lall, P, Kothari, N, & Deep, J. "Damage Progression in Fuze Assemblies Subjected to High-G Mechanical Shock Using X-Ray Digital Volume Correlation." Proceedings of the ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems. ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. San Francisco, California, USA. August 29–September 1, 2017. V001T03A008. ASME. https://doi.org/10.1115/IPACK2017-74269
Download citation file:
34
Views
Related Proceedings Papers
Related Articles
Micro-Radiography and Tomography for High Resolution NDT of Advanced Materials and Microstructural Components
J. Eng. Mater. Technol (April,1990)
Stress–Strain Behavior of SAC305 at High Strain Rates
J. Electron. Packag (March,2015)
Vibration-Induced Failures in Automotive Electronics: Knowledge-Based Qualification Perspective
J. Electron. Packag (June,2018)
Related Chapters
Reasons for Lay-Up
Consensus for the Lay-up of Boilers, Turbines, Turbine Condensors, and Auxiliary Equipment (CRTD-66)
Telecom: A Field with Myths and Mistakes All Its Own
More Hot Air
Expert Systems in Condition Monitoring
Tribology of Mechanical Systems: A Guide to Present and Future Technologies