Two-phase cooling has become an increasingly attractive option for thermal management of high-heat flux electronics. Cooling channels embedded directly on the back of the heat source (chip) facilitate two-phase boiling/evaporation effectiveness, eliminating many thermal resistances generated by more traditional, remote chip-cooling approaches. Accordingly, manifold-microchannel flow paths in embedded cooling systems can allow very high heat fluxes with low junction temperatures. But, the effect of the feeding manifold design, channel geometry, and the associated shear, stagnation zones, and centripetal accelerations with varying heat flux and mass flux are not well understood. This study builds upon our previous work and elucidates effects of channel geometry, mass flux, and outlet quality on the boiling/evaporation flow regimes in a manifolded microgap channel.

This content is only available via PDF.
You do not currently have access to this content.