This paper provides details of Knowledge Based Qualification (KBQ) methodology to calculate BGA component shock qualification requirements. The methodology is based on experimental, theoretical and computational approach used to generate a detailed knowledge of the use conditions and failure physics. Discussed are the steps taken to understand the end-user behavior and system design impact on dynamic load experienced by the component in the field. A special focus is placed on the understanding of the board deformation modes, their impact on BGA failures, and the physics-of-failure (PoF) metric that is not only accurate enough but also practical for everyday applications. Theoretical and computational modeling was used to perform the necessary “translations” from use condition to test conditions and from system level drop to test board component shock. These “translations” enabled by the PoF metric, directly lead to the determination of BGA shock qualification requirements.

This content is only available via PDF.
You do not currently have access to this content.