High-fidelity simulation of flow boiling in microchannels remains a challenging problem, but the increasing interest in applications of microscale two-phase transport highlight its importance. In this paper, a volume of fluid (VOF)-based flow boiling model is proposed with computational expense-saving features that enable cost-effective simulation of two-phase flow and heat transfer in realistic geometries. The vapor and liquid phases are distinguished using a color function which represents the local volume fraction of the tracked phase. Mass conservation is satisfied by solving the transport equations for both phases with a finite-volume approach. In order to predict phase change at the liquid-vapor interface, evaporative heat and mass source terms are calculated using a novel, saturated-interface-volume phase change model that fixes the interface at the saturation temperature at each time step to achieve stability. Numerical oscillation of the evaporation source terms is thus eliminated and a non-iterative time advancement scheme can be adopted to reduce computational cost. The reference frame is set to move with the vapor slug to artificially increase the local velocity magnitude in the thin liquid film region in the relative frame, which reduces the influence of numerical errors resulting from calculation of the surface tension force, and thus suppresses the development of spurious currents. This allows use of non-uniform meshes that can efficiently resolve high-aspect-ratio geometries and flow features and significantly reduces the overall numerical expense. The proposed model is used to simulate the growth of a vapor bubble in a heated 2D axisymmetric microchannel. The bubble motion, bubble growth rate, liquid film thickness, and local heat transfer coefficient along the wall are compared against previous numerical studies.

This content is only available via PDF.
You do not currently have access to this content.