A novel fully dynamic model of a microchannel evaporator is presented. The aim of the model is to study the highly dynamic parallel channel instabilities that occur in these evaporators in more detail. The numerical solver for the model is custom-built and the majority of the paper is focused on detailing the various aspects of this solver. The one-dimensional homogeneous two-phase flow conservation equations are solved to simulate the flow. The full three-dimensional conduction domain of the evaporator is also dynamically resolved. This allows for the correct simulation of the complex hydraulic and thermal interactions between the microchannels that give rise to the parallel channel instabilities. The model uses state-of-the-art correlations to calculate the frictional pressure losses and heat transfer in the microchannels. In addition, a model for inlet restrictions is also included to simulate the stabilizing effect of these components. In the final part of the paper, initial validation results of the model are presented, in which stability results of the model are compared to existing experimental data from literature. Finally, some representative dynamic results are also given to demonstrate some of the unique capabilities of the model.
- Electronic and Photonic Packaging Division
Novel Dynamic Numerical Microchannel Evaporator Model to Investigate Parallel Channel Instabilities
Saenen, T, & Thome, JR. "Novel Dynamic Numerical Microchannel Evaporator Model to Investigate Parallel Channel Instabilities." Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 3: Advanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro- and Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays. San Francisco, California, USA. July 6–9, 2015. V003T10A021. ASME. https://doi.org/10.1115/IPACK2015-48066
Download citation file: