In this study, a new two-phase heat sink architecture is introduced that operates in two different phase change modes. At low wall superheat temperatures, the heat sink operates at the thin film evaporator mode and transitions to boiling when the wall superheat temperature is increased. This unique function is enabled through constraining the liquid and vapor phases into separate domains using capillary-controlled meniscus formed within a hierarchical 3D structure. The structure is designed to form thin layers of vertically oriented liquid films that directly evaporate into their neighboring vapor space. The dominant mode of heat transfer in this design is thin film evaporation, a very effective boiling sub-process. As the surface superheat temperature is increased and boiling starts, the capillary-controlled meniscus breaks down. A heat transfer coefficient of greater than 200 kW/m2K is achieved at less than 1 °C wall superheat temperature.

This content is only available via PDF.
You do not currently have access to this content.