The ability of various arrays of micro pin-fins to reduce maximum temperature of an integrated circuit with a 4 × 3 mm footprint and a 0.5 × 0.5 mm hot spot was investigated numerically. Micro pin-fins having circular, symmetric airfoil and symmetric convex lens cross sections were optimized to handle a background uniform heat flux of 500 W cm−2 and a hot spot uniform heat flux of 2000 W cm−2. A fully three-dimensional conjugate heat transfer analysis was performed and a multi-objective, constrained optimization was carried out to find a design for each pin-fin shape capable of cooling such high heat fluxes. The two simultaneous objectives were to minimize maximum temperature and minimize pumping power, while keeping the maximum temperature below 85 °C. The design variables were the inlet average velocity and shape, size and height of the pin-fins. A response surface was generated for each of the objectives and coupled with a genetic algorithm to arrive at a Pareto frontier of the best trade-off solutions. Stress–deformation analysis incorporating hydrodynamic and thermal loads was performed on the three Pareto optimized configurations. Von-Mises stress for each configuration was found to be significantly below the yield strength of silicon.

This content is only available via PDF.
You do not currently have access to this content.