This paper reports on a microfluidic-based tactile sensor capable of detecting forces along two directions and torque about one direction. The 3-Degree-Of-Freedom (3-DOF) force/torque sensor encompasses a symmetric three-dimensional (3D) microstructure embedded with two sets of electrolyte-enabled distributed resistive transducers underneath. The 3D microstructure is built into a rectangular block with a loading-bump on its top and two microchannels at its bottom. Together with electrode pairs distributed along the microchannel length, electrolyte in each microchannel functions as a set of three resistive transducers. While a normal force results in a resistance increase in the two sets of transducers, a shear force causes opposite resistance changes in the two sets of transducers. Conversely, a torque leads to the opposite resistance changes in the two side transducers in each set. Soft lithography and CNC molding are combined to fabricate a prototype tactile sensor. The experimental results validate the feasibility of using this microfluidic-based tactile sensor for 3-DOF force/torque detection.

This content is only available via PDF.
You do not currently have access to this content.