Hydrogen sulfide (H2S) is rapidly emerging as a biologically significant signaling molecule. In recent studies, sulfide level in blood or plasma has been reported to be in the concentration between 10 and 300 μM suggesting it acts in various diseases. This work reports progress on a new Lab-on-a-Chip (LOC) device for these applications. The uniquely designed, hand-held device uses advanced liberation chemistry that releases H2S from liquid sample and an electrochemical approach to detect sulfide concentration from the aqueous solution.

The device itself consists of three distinct layers of Polydimethylsiloxane (PDMS) structures and a three electrode system for direct and rapid H2S concentration measurement.

In this work specifically, the oxidation of sulfide at the gold (Au) and platinum (Pt.) electrodes has been examined. This is the first known application of electrochemical H2S sensing in an LOC application. The analytical utility and performance of the device has been assessed through direct detection using chronoamperometry (CA) scan and cyclic voltammetry (CV). An electrocatalytic sulfide oxidation signal has been recorded for sulfide concentration range vs, Ag/AgCl at different pH buffers at the trapping chamber. The calibration curve in the range 1 μM to 1 M was obtained using this electrode setup. The detection limit was found to be 0.1 μM. This device shows promise for providing fast and inexpensive determination of H2S concentration in aqueous samples.

This content is only available via PDF.
You do not currently have access to this content.