Forests comprised of nominally vertically aligned carbon nanotubes (CNTs) are excellent candidates for thermal interface materials (TIMs) due to their theoretically predicted outstanding thermal and mechanical properties. Unfortunately, due to challenges in the synthesis and characterization of these materials reports of the thermal conductivity and thermal contact resistance of CNT forests have varied widely and typically fallen far short of theoretical predictions. In particular, the micro- and nano-length scales characteristic of the heat transfer in CNT forests pose significant challenges and may lead to misreported results. Here we examine the ability of a popular and well-established thermal metrology technique, time-domain thermoreflectance (TDTR), to resolve the properties of CNT forest TIMs. The characteristic heating frequencies of TDTR (1–10 MHz) are used to probe heat transfer at length scales spanning ∼0.1–1 μm, applicable for measuring the contact resistance between the CNT forest free tips and an opposing substrate. We identify the range of CNT forest-opposing substrate interface resistances that can be resolved with TDTR, and simultaneously demonstrate the effectiveness of several processes developed to reduce the resistance of these interfaces. The limitations of characterizing CNT forests with TDTR are discussed in terms of uncertainty and sensitivity to parameters of interest.
- Electronic and Photonic Packaging Division
Characterization of Carbon Nanotube Forest Interfaces Using Time Domain Thermoreflectance
Bougher, TL, Taphouse, JH, & Cola, BA. "Characterization of Carbon Nanotube Forest Interfaces Using Time Domain Thermoreflectance." Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 3: Advanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro- and Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays. San Francisco, California, USA. July 6–9, 2015. V003T04A005. ASME. https://doi.org/10.1115/IPACK2015-48587
Download citation file: