This paper reports on a study and application of laser ablation for machining of micro-serrations on surgical blades. The proposed concept is inspired by nature and mimics a mosquito’s maxilla, which is characterized by a number of serrations along its edge in order to painlessly penetrate human skin and tissue. The focus of this study is to investigate the maxilla’s penetration mechanisms and its application to commercial surgical blades. The fundamental objective is to understand the friction and cutting behavior between a serrated hard surface and soft materials, as well as to identify serration patterns that would minimize the cutting force and the friction of the blade during tissue cutting. Micro-serrations characterized by different patterns and sizes ranging from 200 μm to 400 μm were designed and manufactured on surgical blades. As supported by finite element methods (FEM), a reduction of 20∼30% in the force during blade cutting has been achieved, which encourages further studies and their applications to biomedical devices.

This content is only available via PDF.
You do not currently have access to this content.