Polymeric materials have several favorable properties for heat transfer systems, including low weight, low manufacturing cost, antifouling, and anticorrosion. Additionally, polymers are typically electrical insulators, making them favorable for applications in which electrical conductivity is a concern. Examples of utilizing these favorable properties are discussed. The drawbacks to raw polymer materials include low thermal conductivity, low structural strength, and poor stability at elevated temperatures. Methods of mitigating these unfavorable properties, including loading the polymer with other materials and developing new polymers, are discussed. Enhanced geometric designs enabled by additive manufacturing can also improve thermal performance of polymer heat exchangers. Results of a research study utilizing additive manufacturing toward developing high-performance and cost-effective polymer heat exchangers for an air-to-liquid application are reviewed and discussed. Finally, needs for further research on enhancing polymer thermal performance are discussed.
- Electronic and Photonic Packaging Division
Review of Most Recent Progress on Development of Polymer Heat Exchangers for Thermal Management Applications
Deisenroth, DC, Arie, MA, Dessiatoun, S, Shooshtari, A, Ohadi, M, & Bar-Cohen, A. "Review of Most Recent Progress on Development of Polymer Heat Exchangers for Thermal Management Applications." Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 3: Advanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro- and Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays. San Francisco, California, USA. July 6–9, 2015. V003T03A003. ASME. https://doi.org/10.1115/IPACK2015-48637
Download citation file: