The recent years have witnessed the tremendous development in electronics with high power density, such as highly integrated chips and high power LEDs. As a result, the continuous increase in power consumption of electronics is gradually leading to an urgent need for high performance cooling strategies. Among the existed cooling methods, liquid cooling has been proved to be a kind of effective cooling technology for the removal of a large amount of heat from high power devices. Traditional liquid cooling technique commonly refers to utilizing water as the coolant, which is low cost and owns a relatively higher specific heat capacity, however, lower convective coefficient. On the contrary, liquid metal owns much higher convective coefficient, however, lower specific heat capacity. In addition, the higher cost of liquid metal also limits its utilization with large quantity in electronic cooling areas. In this study, a hybrid mini/micro-channel heat sink, based on both of liquid metal and water, was demonstrated. The new system combines the advantages of the two coolants. Experimental studies were conducted to evaluate the capability of the cooling performances of the hybrid system under different operation conditions, including different flow rates, flow directions, pump failure and thermal shock. The experimental results indicate that the hybrid mini/micro channel heat sink owns better cooling performance than water-based heat sink.

You do not currently have access to this content.