Microporous metals are extensively applied in convective cooling of high heat flux systems such as electronics. Traditional fabrication approaches, such as sintering of metallic particles, however, produce materials with limited fluid transport capability. Here, we demonstrate control and enhancement of the permeability of porous copper inverse opals produced via electrodeposition around a sacrificial polymer template. Sintering of the template is used to control the fluid transport network microstructure, with permeability increasing for increasing sintering times. These electrodeposited structures achieve permeabilities greater than 1×10−12 m2 with 5 μm pores, roughly 5 times larger than those of porous sintered copper with comparable feature sizes. The high permeability and small feature sizes, with attendant high specific surface area and strong capillarity, offered by the sintered template electrodeposited copper are attractive for two phase cooling applications.

This content is only available via PDF.
You do not currently have access to this content.