Despite being a critical phenomenon of tremendous technological significance in ultrasonic flip-chip and wire bonding processes of today’s microelectronic devices, interfacial bond formation still calls for better understanding at a fundamental level. The goal of the research is to improve these processes through better understanding and modeling of bond formation. This paper presents a micromechanics model that addresses increasing contact area during ultrasonic cyclic loading cycle. The micromechanics model provides interfacial shear stress as boundary condition to FEM simulations of ultrasonic bonding processes. Comparison between preliminary results and experimental data is conducted.

This content is only available via PDF.
You do not currently have access to this content.