This paper focuses on developing a reliable thermal interface material (TIM) using low melt alloys (LMAs) containing gallium (Ga), indium (In), bismuth (Bi), and tin (Sn). The investigation described herein involved the in situ thermal performance of the LMAs as well as performance evaluation after accelerated life cycle testing, which included isothermal aging at 130°C and thermal cycling from −40°C to 80°C. Three alloys (75.5Ga &24.5In, 100Ga, and 51In, 32.5Bi &16.5Sn) were chosen for testing the thermal performance. Testing methodologies used follow ASTM D5470 protocols and the results are compared with some commercially available TIMs. The LMAs-substrate interaction was investigated by applying the alloys using different surface treatments (copper and tungsten). Measurements show that the alloys did survive extended aging and cycling depending upon the substrate-alloy combinations.

This content is only available via PDF.
You do not currently have access to this content.