Organic phase change materials (PCMs) such as paraffins or unsaturated acids use the latent heat of melting for thermal energy storage as a passive cooling mechanism for portable electronics. Researchers have suggested that a PCM’s thermal energy storage capability is linked to its thermal properties, yet this connection has not yet been quantified. This study first uses group theory and known values from literature to obtain the thermophysical properties for a variety of paraffins and unsaturated acids. Then, multiphysics-based finite element analysis (FEA) is applied to determine the influence of these thermophysical properties on the PCM latent heat storage capability for a side heating configuration. The FEA models include melting and re-solidification, natural convection, conduction, and the monitoring of input and output periodic heat fluxes. The phase change was achieved through application of temperature-dependent viscosity and heat capacity relations. The thermal energy storage efficiency is defined as one minus the ratio of integrated output heat flux to the integrated input heat flux. The FEA results are used to provide predictions of thermal energy storage for a variety of PCMs for various aspect ratios under different heating conditions. Insights are gained in relating thermal storage efficiency to the system configuration.
Skip Nav Destination
ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
July 6–9, 2015
San Francisco, California, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-5688-8
PROCEEDINGS PAPER
Quantification of Phase Change Material Energy Storage Capability Using Multiphysics Simulations
W. E. O’Connor,
W. E. O’Connor
Villanova University, Villanova, PA
Search for other works by this author on:
A. P. Wemhoff
A. P. Wemhoff
Villanova University, Villanova, PA
Search for other works by this author on:
W. E. O’Connor
Villanova University, Villanova, PA
A. P. Wemhoff
Villanova University, Villanova, PA
Paper No:
IPACK2015-48522, V001T09A065; 6 pages
Published Online:
November 19, 2015
Citation
O’Connor, WE, & Wemhoff, AP. "Quantification of Phase Change Material Energy Storage Capability Using Multiphysics Simulations." Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Thermal Management. San Francisco, California, USA. July 6–9, 2015. V001T09A065. ASME. https://doi.org/10.1115/IPACK2015-48522
Download citation file:
21
Views
Related Proceedings Papers
Related Articles
Analysis and Design of a Paraffin/Graphite Composite PCM Integrated in a Thermal Storage Unit
J. Sol. Energy Eng (November,2010)
A General Model for Analyzing the Thermal Performance of the Heat Charging and Discharging Processes of Latent Heat Thermal Energy Storage Systems
J. Sol. Energy Eng (August,2001)
Numerical and Experimental Investigation on a Combined Sensible and Latent Heat Storage Unit Integrated With Solar Water Heating System
J. Sol. Energy Eng (November,2009)
Related Chapters
Numerical Study on Dynamic Charging Performance of Packed Bed Using Spherical Capsules Containing N-Tetradecane
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Hydro Tasmania — King Island Case Study
Hydro, Wave and Tidal Energy Applications
Numerical Analysis of a Latent Heat Storage Heat Exchanger Considering the Effect of Natural Convection
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)