Three-dimensional finite-element modeling is used to determine the thermally optimum design of a GaN-on-SiC MMIC power amplifier, with a focus on the parametric influence of the thermal boundary resistance (TBR), epitaxial geometry, and dissipated linear power on the HEMT junction temperature rise. A commercial MMIC power amplifier is used to set the baseline geometry and dimensions. It is found that the frequently neglected Thermal Boundary Resistance (TBR), between the GaN and SiC, not only has a significant influence on the maximum junction temperature, but directly influences the thermally-optimal GaN thickness for the HEMT transistor. The thermally-optimal GaN thickness is a balance between spreading, vertical thermal resistance, and the magnitude of the TBR. As a consequence, it is seen the commonly used, submicron l GaN thicknesses approach optimality only when the TBR values are below 10 m2-K/GW. Additionally, it is observed that increasing the gate pitch and substrate thickness helps to diffuse the flow of heat within the substrate before it proceeds into the cooling solution, resulting in an overall decrease in thermal resistance. The numerical results are used to verify the accuracy of an available analytical solution for a surface heat source on an orthotropic multi-layer structure, albeit with assumed temperature-invariant properties, thus enabling use of this relation in scoping and preliminary design calculations.

This content is only available via PDF.
You do not currently have access to this content.