Fast Fluid Dynamics (FFD), which has its origins in video game and movie animation applications, promises faster solve times than traditional RANS (Reynolds-Averaged Navier Stokes) CFD, is relatively easy to code, and is particularly suited to parallelization. Further, FFD is capable of modeling all relevant airflow physics including momentum, buoyancy and frictional effects which are not included in a standard Potential Flow Model (PFM). The present study is a first attempt to formally evaluate FFD for data center applications in which perforated tile airflow is predicted utilizing two-dimensional plenum models. Comparisons are made to RANS CFD and Potential Flow Modeling (PFM) over a variety of data center configurations based on five basic data center layouts, most of which are based on actual data centers. Results are compared to experimental measurements for one scenario.

This content is only available via PDF.
You do not currently have access to this content.