The most common approach to air cooling of data centers involves the pressurization of the plenum beneath the raised floor and delivery of air flow to racks via perforated floor tiles. This cooling approach is thermodynamically inefficient due in large part to the pressure losses through the tiles. Furthermore, it is difficult to control flow at the aisle and rack level since the flow source is centralized rather than distributed. Distributed cooling systems are more closely coupled to the heat generating racks. In overhead cooling systems, one can distribute flow to distinct aisles by placing the air mover and water cooled heat exchanger directly above an aisle. Two arrangements are possible: (i.) placing the air mover and heat exchanger above the cold aisle and forcing downward flow of cooled air into the cold aisle (Overhead Downward Flow (ODF)), or (ii.) placing the air mover and heat exchanger above the hot aisle and forcing heated air upwards from the hot aisle through the water cooled heat exchanger (Overhead Upward Flow (OUF)). This study focuses on the steady and transient behavior of overhead cooling systems in both ODF and OUF configurations and compares their cooling effectiveness and energy efficiency. The flow and heat transfer inside the servers and heat exchangers are modeled using physics based approaches that result in differential equation based mathematical descriptions. These models are programmed in the MATLAB™ language and embedded within a CFD computational environment (using the commercial code FLUENT™) that computes the steady or instantaneous airflow distribution. The complete computational model is able to simulate the complete flow and thermal field in the airside, the instantaneous temperatures within and pressure drops through the servers, and the instantaneous temperatures within and pressure drops through the overhead cooling system. Instantaneous overall energy consumption (1st Law) and exergy destruction (2nd Law) were used to quantify overall energy efficiency and to identify inefficiencies within the two systems. The server cooling effectiveness, based on an effectiveness-NTU model for the servers, was used to assess the cooling effectiveness of the two overhead cooling approaches.
Skip Nav Destination
ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
July 6–9, 2015
San Francisco, California, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-5688-8
PROCEEDINGS PAPER
The Effectiveness of Data Center Overhead Cooling in Steady and Transient Scenarios: Comparison of Downward Flow to a Cold Aisle Versus Upward Flow From a Hot Aisle
Luis Silva-Llanca,
Luis Silva-Llanca
Universidad de La Serena, La Serena, Chile
Search for other works by this author on:
Marcelo del Valle,
Marcelo del Valle
Villanova University, Villanova, PA
Search for other works by this author on:
Alfonso Ortega
Alfonso Ortega
Villanova University, Villanova, PA
Search for other works by this author on:
Luis Silva-Llanca
Universidad de La Serena, La Serena, Chile
Marcelo del Valle
Villanova University, Villanova, PA
Alfonso Ortega
Villanova University, Villanova, PA
Paper No:
IPACK2015-48423, V001T09A023; 10 pages
Published Online:
November 19, 2015
Citation
Silva-Llanca, L, del Valle, M, & Ortega, A. "The Effectiveness of Data Center Overhead Cooling in Steady and Transient Scenarios: Comparison of Downward Flow to a Cold Aisle Versus Upward Flow From a Hot Aisle." Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Thermal Management. San Francisco, California, USA. July 6–9, 2015. V001T09A023. ASME. https://doi.org/10.1115/IPACK2015-48423
Download citation file:
18
Views
Related Proceedings Papers
Related Articles
Experimental and Computational Investigations of the Thermal Environment in a Small Operational Data Center for Potential Energy Efficiency Improvements
J. Electron. Packag (September,2020)
Experimental and Numerical Analysis of Data Center Pressure and Flow Fields Induced by Backward and Forward CRAH Technology
J. Electron. Packag (September,2022)
Ultra-Compact Microscale Heat Exchanger for Advanced Thermal Management in Data Centers
J. Electron. Packag (June,2022)
Related Chapters
Engineering and Physical Modeling of Power Plant Cooling Systems
Thermal Power Plant Cooling: Context and Engineering
Threshold Functions
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Fans and Air Handling Systems
Thermal Management of Telecommunications Equipment