Data centers are most commonly cooled by air delivered to electronic equipment from centralized cooling systems. The research presented here is motivated by the need for strategies to improve and optimize the load capacity and thermal efficiency of data centers by using computational fluid dynamics (CFD). Here, CFD is used to model and optimize the Villanova Steel Orca Research Center (VSORC). VSORC, presently in the design stages, will provide a testing environment as well as the capability to investigate best practices and state of the art strategies including hybrid cooling, IT load distribution, density zones, and hot aisle and cold aisle containment. The results of this study will be used in the overall design and construction of the aforementioned research data center. The objective of this study is to find the optimal operating points and design layout of a data center while still meeting certain design constraints. A focus is on finding both the ideal total supply flow rate of the air conditioning units and the ideal chilled water supply temperature (CHWST) setpoint under different data center design configurations and load capacities. The total supply flow rate of the air conditioning units and the supply temperature setpoint of the chilled water system are varied as design parameters in order to systematically determine the optimal operating points. The study also examines the influence of hot aisle and cold aisle containment strategies in full containment, half containment, and no containment configurations on the determined optimal operating conditions for the modeled research data center.

This content is only available via PDF.
You do not currently have access to this content.