Server thermal mass can significantly affect the rate at which a data center heats up following a loss of cooling and moderate transient temperature fluctuations due to changing CPU utilization. Recently, a compact server model has been introduced which captures the effects of thermal mass while avoiding the impractical level of detail that would be required by an explicit representation of all relevant server components. Inputs to that model include server mass, overall effective specific heat, and a parameter called the “server thermal effectiveness”. The latter characterizes the server’s ability to transfer heat to/from the airstream passing through it and can take values between zero (no heat exchange) and one (maximum possible heat exchange). Server thermal mass is a physical property of a server and is not influenced by external factors.

In order to use the compact model for practical applications, we must experimentally measure the thermal effectiveness of actual servers. The present study reviews the compact model and describes the development of an experimental technique for measuring thermal effectiveness. The technique is validated using simple plate fin heat sinks in place of an actual server. This “server proxy” is sufficiently simple so that it can be modeled accurately in detail in CFD, providing well-controlled benchmark data. CFD and experimental measurements both yield a value of server thermal effectiveness of approximately 0.6, providing confidence in the model and measurement technique for the future characterization of actual servers.

This content is only available via PDF.
You do not currently have access to this content.